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A new technique for handling Monte Carlo integrations with d-function constraints is 
presented. Points are generated in the unconstrained volume and then mapped by a scale 
transformation or other mapping onto the constrained subspace. The correct weight 
factors associated with such mappings are given for n-particle phase space with energy- 
momentum conservation constraints. The flexibility and simplicity of this scheme are 
discussed in comparison with existing alternative methods. 

I. INTRODUCTION 

Both the simulation of experiments and model theoretical analysis of multi- 
particle production processes in particle physics often involve phase space integrals 
of high dimensionality. Since it is not feasible to evaluate most such integrals 
analytically, Monte Carlo methods are frequently used and various techniques 
have been developed for specific purposes [l-4]. For integrals of high dimen- 
sionality, the integration volume usually increases rapidly with dimension and the 
number of random events needed for a desirable statistical accuracy may become 
prohibitive, unless the integrand is either sufficiently smooth (so that a very 
detailed sampling over the entire region of integration is not needed) or contributes 
appreciably to the integral only in a small portion of the region, where the random 
sample of events can be concentrated by a suitable choice of distribution. In 
essence, an efficient Monte Carlo method generates random events satisfying 
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given constraints and concentrated in the regions where the integrand is impor- 
tant [5]. On the other hand, to achieve a high efficiency may become a formidable 
task in itself which can take a large amount of programming and computing time, 
possibly even exceeding the time needed for the actual calculation. Such an 
optimization scheme may also vary from case to case. Therefore, we almost 
always have to compromise between the efficiency, the total time, and the flexibility 
of the program, and it is desirable to have a sufficiently simple but versatile scheme, 
which can handle a variety of cases with reasonable efficiency and, of course, can 
be further optimized if needed. 

Most existing event generators parametrize the n-particle phase space in such 
a way that the energy-momentum surface is mapped into some (3n - 4)-dimen- 
sional hypercube. The mapping is chosen so that a uniform density in the hypercube 
corresponds as nearly as possible to the desired density on the energy momentum 
surface. In this paper we present an alternative scheme in which a full 3n-dimen- 
sional parametrization is used and each point generated is then mapped into a 
point on the energy-momentum surface. This allows much greater flexibility in 
the parametrization, allowing a closer simulation of the desired distribution. The 
procedure is not restricted to the use of variables defined in any special Lorentz 
frame. 

In Sections II and III, we briefly summarize the basic concepts of phase space 
integrals and Monte Carlo integration. In Section IV, we discuss the techniques 
for satisfying the constraints by mapping events generated without the constraints 
onto the constrained subregion and discuss linear constraints as a simple example 
in Section V. Explicit energy-momentum conservation constraints are discussed 
in Section VI in terms of different sets of kinematical variables. In Section VII 
we discuss practical phase space event generators and in Section VIII we discuss 
the assignment of an arbitrary function. The techniques described here have 
already been successfully applied to multiparticle calculations [6-81. 

II. PHASE SPACE INTEGRALS 

Almost any measurable physical quantity in particle physics, whether a cross 
section, average value of some momentum or internal quantum number, etc., 
can be viewed as an integral (or sums of integrals) over an n-particle phase space 
of the form 

where 
dQ(P) = d4P w - m”) m3 (H-2) 
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is the invariant phase space volume element associated with a free particle of 
four-momentum pU and mass m [9]. 

fYP1 a+- p,J is the probability density, appropriately normalized, of observing 
an event specified by the set of momenta p1 ... pn . This probability density, of 
course, depends on the production mechanism and, in an experimental measure- 
ment, may also depend on the efficiency of the measuring apparatus. 

Q(pl ... p,) is the kinematical quantity whose average is being measured (equal 
to unity if it is a cross section per invariant phase space volume or a total cross 
section). 

C(p, -.-p,J is a function representing kinematical constraints defining the 
measurement, consisting just of 6 functions for total energy-momentum conserva- 
tion if it is a total cross section but, in general, including angular or other kinemat- 
ical cuts specifying a particular histogram bin or a particular geometry of the 
measuring apparatus. 

Thus, in simulating an experiment or doing a theoretical analysis, we must in 
general evaluate an integral in a 3n-dimensional phase space, constrained to at 
most a (3n - 4)-dimensional subspace. Formally the range of the integral is 
unrestricted, though the constraints C keep the integration region finite. 

Besides the components of the four-momenta pl,, **a pnLI , there are alternative 
kinematical variables which are useful as variables of integration. We shall use 
the following notation for the kinematic variables associated with the four- 
momentum p”. 

P = (Pz,Pl/,Pz) (II-3a) 

is the three-momentum in rectangular coordinates; 

P = (P7 6 cp) (II-3b) 

is the three-momentum in polar coordinates; 

PI = (Ps 9 P,) (11-4) 

is the transverse momentum, usually defined as perpendicular to the direction of 
the incident system in a production process; 

p. = (p2 + m2)1/2 = (pz2 + p12)1/2 (11-5) 

is the energy, where 
/.&L2 = p12 + m2 

is the square of the transverse mass. 
We define 

P* =Po*Pz; 

(11-6) 

(11-7) 
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then 
5 = arc cosh(p,/m) (11-8) 

is the boost angle and 

Y = arc cosh(pohJ = + ln(p+/p-1 (11-9) 

is the rapidity. No more than three of these quantities listed are independent; 
if we denote these three as x = (x1 , xZ , x,), then 

for example, 

dQ(P) = @(Xl 9 x2 3 x3) d3x, 

@(Pz 3 PY 3 Pz) = 1/2Po 2 

@(P, 6 T) = P”I2Po 3 

@(P, ,pg , v) = a, etc. 

(11-10) 

(II-1 1) 

(11-12) 

(11-13) 

The integral (II-l) can then be rewritten as 

F = j-f(q ,..., x,) C(x, ,..., x,) fi d3xi , 
i=l 

(11-14) 

wheref(x, ,..., xn) is the product of P, Q and the Q’s and C specifies the constraints. 
More generally, the kinematical variables for each individual particle may be 
replaced by other variables; for example, the invariant energies of various sub- 
systems of particles, the relative angles defined by the subsystem, etc., can also 
be used as the variables of integration, with an appropriate nonfactorizable 
Jacobian @. 

III. MONTE CARLO INTEGRATION 

Consider an Z-dimensional integral 

F = 
s 

f(r) dir; r = (rl -a- tj), (III-l) 
R 

where f is some function and R some region in the Z-dimensional space of r. The 
Monte Carlo procedure is to select N points ru) ’ in R at random with probability 
distribution p(r) 

I p(r) dzr = 1. 
R 

(111-2) 
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Then (see [5]), 

(W-3) 

The convergence of this expression to (III-l) can depend sensitively on the choice 
of p(r). Ideally, p(r) should be directly proportional to f(r). In particular, it is 
obvious that iff(r) contains a 6 function, then unless p(r) also contains the same 
6 function, F given by Eq. (111-3) will remain zero. 

Complicated probability distributions p(r) cannot easily be generated on a 
computer, so it is in general necessary to transform the variables of the original 
expression in Eq. (III-l) so that the desired p can be reasonably well approximated 
by a simple distribution in the new variables (such as uniform or Gaussian). 

IV. CONSTRAINTS 

Integrals over phase space usually involve both 6 function and 0 function 
constraints. Let us first consider the former, and as a trivial example, to illustrate 
the principles involved, let us consider the integral 

Z = j- j+“f(x, y) S(xz + y2 - a2) dx dy, 
-m 

(IV-l) 

where we integrate a function of two variables over the boundary of a circle of 
radius a. Note that, because of the 6 function the integration region may be 
formally taken as infinite. 

The most straightforward way of treating the integral would be to eliminate 
the y integration and write 

z = j+am &(a2 - x2Y’3 qa2 ?x2)l,2 * --a 
From the point of view of Monte Carlo integration this suffers the disadvantage 
that a uniform distribution of points in x yields a very nonuniform distribution 
of points on the circle, and also that both branches of the square root have to 
be considered explicitly. 

A much better procedure is to use polar coordinates to write 

Z = f j-rf(r cos 8, r sin 0) 6(r2 - a2) r dr d0 

f 
2*f(~ cos 8, u sin e) q . 

0 
(IV-3) 
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However, this depends on recognizing a “good” choice of variables for the region 
defined by the 6 function, which frequently is not easy, particularly in a multi- 
dimensional case. 

For Monte Carlo integration, there is an equivalent procedure which preserves 
this advantage but can more easily be generalized. We introduce a scaling 
variable h. Then replacing x by Xx and y by Xy, we can write 

z = j-j++mf(Ax, Ay) S(h2x2 + Xzy2 - a”) X2 dx dy 
--m 

(IV-4) 

for any A, since the integration range is independent of scale. Let u(z) be any 
normalized function: 1 

J o(z)dz= 1. (IV-5) 
Then 

Z = j-+m Zu(A) dh (IV-6) 
-co 

z= 

H-s 

- j(~, xy) ~(~2x2 + h2y2 - a2) X2a(h) dx dv dx. (IV-7) 
-* 

Now carry out the h integration using the 6 function: 

(IV-8) 

2 where h, = a/(x2 + y ) lj2 is the value of X causing the argument of the 6 function 
to vanish. Thus we have retained the form of a two-dimensional integral but each 
point has been mapped onto the boundary of the circle. A uniform density in the 
(xv) plane results in a uniform distribution on the circle. As a Monte Carlo 
procedure the efficiency is determined by the form of the function u, whether 
the set of values of X, generated by the chosen distribution of values of x and y 
is a good set for evaluating (IV-8). The choice of u will be discussed in Section VIII. 

For a two-dimensional integral this is a somewhat heavy-handed procedure; 
however, it has the great advantage that the zero of the 6 function argument has 
only to be determined numerically, rather than analytically, The resulting simpli- 
fication may even, in this case, compensate for the fact that more points may be 
needed than by using the analog of (IV-3). 

Let us now generalize this to the case of an l-dimensional integrall. 
Consider 

z(a> = Jb.fW ~[dx) - al d’x, (IV-9) 

1 The procedure introduced here is closely related to what is known as “conditional Monte 
Carlo” [S 1. 
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where R, denotes some region in the Z-dimensional space, v is a specified function, 
and a is a parameter. 

Let R, be another Z-dimensional region (not necessarily different from 11,) and 
let 

x = !Ay; 6 (IV-IO) 

be a family of transformations labeled by a parameter b which maps R, into R, 
for all values of b lying in some range. Let 

JAY, 8 = II My; bl/@ II (IV- 11) 

be the transformation Jacobian. Then evidently 

W = jRyi(siu; W S[dg{y; bl) - al JAY, b1 dzy. (W-12) 

(We can in fact allow R, to depend on b. l(a) will still be independent of b if the 
region R, , for all values of b in p, contains the entire set of values of y for which 
the argument of the 6 function vanishes.) Let u(b) be any function of b with 
normalization 

Then 
s o(b)db = 1. 
8 

I(a) = j I(a) a(b) db 
8 = ss f(g{y; bH ~[dg{y; W - al J,(Y, b) dzw@) db. 8 R 

Y 
Eliminating the 6 function by integrating over b and setting 

JOY, b) = JAY, b)k%4dy; WW1, 
we obtain 

W = f, f&k W JAY, bd 4,J dly, 
Y 

where b, = b,(y) is the solution of 

ddy; 4) = a, 

assumed to be unique and lie in /3. The Monte Carlo result is then 

f(gly, ; &I) J,(Y, 9 bd 4bo3 
P(Yi) I , 

Yi’R, 

(IV-l 3) 

(IV-14) 

(IV-U) 

(IV-K) 

(IV-17) 

(IV-l 8) 
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where p is the probability density in R, according to which the points yi have 
been selected. Note that we have not only removed the 6 function but also have 
the freedom to choose the function a(b) so as to improve convergence. Generaliza- 
tion to more than one &function constraint is straightforward. In Appendix A, 
we shall discuss a more general scheme and also an alternative to it, where more 
degrees of freedom in choosing an arbitrary function u are allowed in both cases. 

As discussed in the two-dimensional example, we have retained the form of an 
l-dimensional integral but each point has been mapped onto the subspace specified 
by the a-function constraints. On the other hand, if the 8 functions are directly 
eliminated, the resulting integral is less than I dimensional. However, an integral 
with a higher dimension may not need more points to calculate than one with 
a lower dimension, provided that a more efficient Monte Carlo scheme can be 
achieved for the former. It is usually difficult to find a “good” choice of variables 
for both solving the 8 functions and sampling the subspace specified by the 
constraints. After using the transformation, the 6 function is solved in terms of 
the transformation parameter and sampling is on the unconstrained variables y. 
The resulting simplicity then may compensate for the need to perform a higher 
dimensional integral. 

Typical transformation functions g are additive ( yi + yi + 6), multiplicative 
( yi + byi), or exponential (yi + yib) which can be used to map the entire space 
-co < yi < + co into itself or, for some cases, (0, co) or (0, 1) into themselves. 

Notice that in eliminating the 6 function in Eq. @V-14), we must solve Eq. (IV-17) 
for a given value of a = a, , for any given y. While it can be explicitly solved for 
some simple cases, it must be solved numerically for other cases. The most con- 
venient way for the latter is by series expansion. In principle, Eq. (IV-17) can be 
inverted to give 

6, = b(y,4, (IV-19) 

though we may not be able to find an explicit form for b(y, a,). Let a, = y(g(y, b,)) 
for some arbitrary value b, . If b, is not too far from b, , we can expand 

(IV-20) 

Although the derivatives Pb/ikz” can not be obtained by explicit differentia- 
tion, they are given in terms of &z/8bn. Writing b(“) = (i3nb/&P),=,l and 
atn’ = (a”u/ab”)b=b, , We have 

b'l' = [&)]-1. 

6'2' = +,1,;_3 u(2), 

b(3) = [,(I)]-5 {3[a(2)12 _ uo)a(3)), 
b'4' = [,tl,]-7 {10u"'a'2'u'3' _ 15[a'2']-3 _ [,W]2 a(4)}, 

(IV-21) 

. . . . etc. 
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Rapid convergence of Eq. (IV-21) requires a good choice of b, . In general, four 
terms should be plenty; if higher precision is needed, the output value of b, can 
be used as an input for another iteration. The choice of b1 , of course, varies 
from case to case and some examples will be discussed in Section VI. 

Constraints involving 6’ functions can be treated by the usual methods; either 
the set of points is selected to directly satisfy the constraints or they can be selected 
from a larger region and then those points outside the domain of the 19 function 
are discarded. Obviously, the latter procedure would give a null result for the 
s-function constraints but only reduces the efficiency for the o-function constraints. 
However, if a larger region is needed for each dimension, the efficiency decreases 
rapidly as the dimensionality increases. A trivial example is that if the range of 
integration is constrained to be inside a unit sphere while the points are uniformly 
selected inside a unit cube, then the ratio of the points inside the sphere to the 
total number of points rapidly decreases to zero as the dimensionality increases. 

An alternative procedure, very similar to the one have discussed for the 6-func- 
tion constraints, can also be worked out for the B-function constraints. Again we 
use the mapping from R, to R, . For each point y, solve for a range of b such that 
the mapped point satisfies the e-function constraint. Then a value of b within 
this range can be randomly selected according to some probability distribution 
u(b) satisfying the normalization condition (IV- 13). Mathematically, we have 

G> = /Rzf(~) &dx) - 4 d’x 

= Rvf(&y; bl) 4dgk W - 4 J,(Y, b) d’y s 
= fi (IV-22) a Rwfkiy; 69 ~[ddy; bl - al JAY; b) 4) db dk 

and regard the 8 function in the last line of Eq. (IV-22) as a function of b for any 
point y. Once again, we may have to solve for the range of b numerically. Depending 
on the accuracy of the numerical solution, points may be accidentally selected 
outside the domain of the original 8 function. Thus, if desired, we can explicitly 
test the constraint for each selected point and throw away these accidental ones. 

V. LINEAR CONSTRAINTS 

A simple application of the method described in the last section is to the case 
of linear constraints. Let 

F = lIrn f(x) &a . x - a) dzx ; 
--m (V-1) 
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then in the notation of Section IV, 

4(X) = a . x 

R,- R, =[-03,m]~ 

The transformations we consider are linear 

g{y; bl = Y + bu, 

u = (1, 1, 1 ..* I), 

(V-2) 

(V-3) 

(V-4) 

from which it immediately follows that 

Hence 

UY, 6) = 1, 

J& b) = Ma * 4, 

b,(y) = (a . u)-’ [a - a . y], 

= a’ - a’ . u. 

(V-5) 

(V-6) 

(V-7) 

F=$&$ 
N f(yM) + (a’ - a’ * y(i)) u) ~(a’ - a’ m y’i)) 

(a l 4 P(Y”‘) 

3 fv-8) 
a=1 

where p(yti)) is the probability density with which y(“) are selected from R, . 
If the components yj are generated independently with means pj and variances 

uj2, i.e., 

(YJ =m, (V-9) 

((Yj - /&Y/c - CL& = q2&c 7 (V-10) 

and if the pFLj satisfy the constraint 

Z aipj = a, (V-l 1) 

then the points x at which the function f is sampled have mean and second moments 

(XJ = (Yh = Pj, (V-12) 

((Xj - &)(Xk - /AL)) = q%j, - CQ’U; - oI;cr; + za;2u~, (V-!3) 

where u’ = a/(a . u) a’ = a/(a * u) as before. In particular, if (y. = (1, 1, 1 ..* l), as 
occurs in the generation of linear momentum components, we have 

((Xi - #4(Xk - pJ> = Uj2Sjk - (1/O[q2 + UK2 + <&I, (V-14) 
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where (02) = (l/l) C:=, g82 is the average of all the uj2. Hence the correlation 
introduced is of order l/l, and is therefore as small as consistent with the constraint. 
This method requires much less computation than that of Kittel et al. [12], 
produces the same result for identical Gaussian distributions and is much more 
general. 

VI. ENERGY AND MOMENTUM CONSERVATION CONSTRAINTS 

The methods described in the last two sections can now be applied to the general 
phase space integral (11-14). Suppose that the only constraints with which we 
are concerned are those of overall energy and momentum conservation: 

(VI-l) 

so that 

C(Xl ** * x,) = 84) 
[ 

i p,(xJ - P, . 
i=l I 

We first generate a set of 3n variables (xi} by some random process. They will 
not satisfy (VI-I) in general. We apply four successive transformations to {xi}, 
each depending on one parameter h, to give a new set 

Xi' = Xi'HXi>, Xl , A2 3 A, , x41 

where X, .a* X4 are determined for each set of (xj> so that the transformed {x,‘} 
satisfy (VI-l). There are many ways of doing this; in this section we give the explicit 
formulation for three typical cases. 

In each of these cases the equations for three of the parameters h can be solved 
explicitly while the fourth must be solved numerically, according to the procedure 
described in Section IV. 

(A) The simplest example assumes that we work in the center of mass system; 
P = 0, P2 = s. In this case we choose pi as variables; the constraints being 

(VI-3a) 

E(p’) = i & = i (pi” + miy = (s)l’” 
i=l i=l 

(VI-3b) 
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associated with the transformations 

Pi’ = 71TPi + A), (VI-4) 

where Ir = -(l/n) C pi and 71 is determined from (VI-3b). To do this we need 
the derivatives of E: 

a"E = (2n - l)! ! f (p;“/n)” . 
3” (--2F izl PC 

(W-5) 

A convenient starting point is 

71 = b - (~m)21/[E2(P + A) - (,%)“I. (VI-6) 

(B) If we deal with a model with limited transverse momentum then we replace 
(VI-4) by 

PL’ = PI + 1, Y 
Pi = q1’2(Pz + u. 1 

(VI-7) 

We then have the same solution as before with mi2 replaced by t.& = mi2 + pL2. 

(C) An alternative scheme, which does not require P = 0, but which also 
treats the longitudinal momenta separately is to use pli and yi as variables. 
The constraints are then 

$lPL=PL, (VI-8a) 

C p;i sinh yi’ = PL , (VI-8b) 

1 pLi cash yi’ = P, , (VI-8c) 
where 

Clearly 

PLi = Pli + h 
Yi’ = aYi + /? 
pLi = (mi 2 + p;3#‘* 

(VI-9) 

A,= -A 
( 
P,- tpli ) 

i=l ) 

P = ln (g,pA emvi/P+), 

where 01 is the solution of 

(VI-IO) 

(VI-1 1) 



EVENT GENERATION WITH CONSTRAINTS 207 

We need the derivatives 

g = j. r! (/ r)! ( ~lPi+~~~)(~lpj-(-yl)z-;) (VI-12) 

and a starting value 

where y’ = min(y, ... y,), y = max(y, ... y,) and pLI’, pI are the associated 
transverse masses. 

Case (A) can be extended to deal with the case P f 0. First use the procedure 
given above to generate a set {qi} with C qi = 0, C qio = (P2)li2 = E. Next 
construct 

Then form 

Set 

Pi1 = qi - ((cli . p)pIP2). 

ei = 4i+p+l(Pil.E)* 

(VI-14) 

(VI- 15) 

Poi = Q-GXei + 0, (VI-16) 
Pti = b%$)(ei - ei’>; 

the four vectors ((pli , pai , po,)> have the required property. 

VII. PROCEDURE FOR EXPLICITLY EVALUATING PHASE SPACE INTEGRALS 

Consider again the problem of calculating the expectation value of some 
measurable quantity in an N-particle state of total four momentum P, having a 
presented probability density per unit phase space volume. Rewriting Eq. (II-l) 
slightly, we wish to evaluate 

<Q> = j- Q(x) f’(x) W, Pit> dQ,(x), (VII-l) 

where x is a point in the 3N-dimensional phase space r;2,, Q is the measured 
quantity, P is the specified probability, and C are the constraint relations specifying 
the total four-momentum. 

The calculational procedure is indicated schematically in the form of a flow 
chart in Fig. 1 and consists of the following stages. 
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A. Specify the parameters of the calculation. These include the number of 
particles N, and their rest masses, the total four-momentum P, , the 
numerical constants (e.g., means and variances) specifying the probability 
distribution according to which the 3N random variables determining a 
point in L?, are to be selected. 

B. Pick a point x0 in the 3N-dimensional space 12N according to some 
probability distribution function p and calculate the associated weight 
wo = lldxo). 

C. Calculate the values of &(x0, P,), i = l,..., 4, such that the point 
x = g(xo 2 b, ... b4) into which p. is mapped by the transformation g lies 
in the (3N - 4)-dimensional subspace Sz, corresponding to total four- 
momentum P, . Calculate the new point x and the corresponding Jacobian 
factor JG introduced in Section IV. 

D. Calculate the probability densities P(x) (associated with the point x) and 
4, ... b4) (associated with the parameters bi); combine these to give an 
effective weight w for the event: w = w. + J,P . u. 

E. Accumulate the weighted values we(x) and the weight w together with 
other distributional information. Return to Step B if more points are 
needed. 

F. Calculate (Q) = ZwQ/Zw. 

FIG. 1. Flow chart for event generator. 
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The dotted line in Fig. 1 indicates the important possibility of self-consistently 
determining some of the parameters. For example, if k, a** ksN are the indepen- 
dently generated random variables which determine the point x, then the procedure 
can be used to used u s e d  
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We discussed in detail in Section VI some choices for the variables x and 
transformation functions g; there are, of course, many others. These choices will 
in turn suggest optimal choices for the arbitrary function o(b) discussed in 
Section VIII. 

FIG. 2. Diagrammatic representation of standard event generation for N particles having 
total four momentum P@, individual four-momenta pl,, ... PNP, and masses p1 *.. pN . 

The physical process corresponding to the event generator of Fig. 1 is indicated 
schematically in Fig. 2. So far we have implicitly suggested that the values of N, 
P, and the masses of the final state particles are fixed and then a large number of 
events is generated. However, there can also be circumstances in which any or 
all of these may vary from event to event. We list here some examples. 

(a) Inclusive Distributions. If we want to compare with an experimental 
measurement, there is no reason why N itself cannot be chosen as a random 
variable provided that the other kinematic parameters are expressed as functions 
of iV. The original probability distribution assumed for N can be modified in a 
self-consistent way as the calculation proceeds, so that the later events are dis- 
tributed in accordance with the calculated multiplicity distribution. 

(b) Energy Dependence. To obtain the dependence on the total energy, this 
can be varied from event to event. Alternatively the energy conservation constraint 
can simply be eliminated and the resulting events sorted into different energy 
bins. The energy spread of the resulting events will be determined by how wide 
a distribution is assumed for the original kinematic variables. 

(c) Resonance Formation. Consider the reaction A + B--f Cl* + C2 + ... C, , 
C,*-+D,+D,*.~ + D, illustrated in Fig. 3. The straightforward procedure is 
to regard this as an (n + m - 1) particle state and choose the invariant mass of 
the particles D as a kinematic variable. An alternative procedure is to treat the 
first stage as an n-particle process where for each event the mass of C, is selected 
from the appropriate Lorentzian distribution, and then use the output four- 
momentum plU as the input total four-momentum of the m-particle process 
corresponding to the decay. Further generalizations are possible. Note that in 
this case we have to keep track of two independent sets of weights and transforma- 
tion parameters. 
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( I+ (MR-M;)/I-~‘) 

FIG. 3. Factoring of resonance production into two standard event generations, event 
generations, with resonance mass MI randomly selected. 

(d) Cluster Formation. Consider the reaction illustrated in Fig. 4: A + B + 

Cl + c2 . ..C.,+D,+D,+***D,, where we may wish to obtain a specific 
distribution in the four-momentum transfer q 2. In this case for each event the 
four-momentum q,, can be selected from the desired distribution and then the 
procedure of Fig. 1 applied separately to the n-particle reaction involving the C’s 
with total four-momentum (pAu + qJ, and the n-particle reaction involving the 
D’s with total four-momentum (pe - q,). Note that in this case as well as in case (c) 
there is an enormous advantage in having a scheme which works with arbitrary P, 
and is not tied to a specific Lorentz frame. 

Cl 
CP 

FIG. 4. Factoring of peripheral production at fixed four-momentum transfer into two standard 
event generations. 
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VIII. ASSIGNMENT OF WEIGHTS 

In the previous section we outlined the procedure for calculating the expectation 
value of some function Q defined on phase space 

(VIII-l) 

where i runs over a set of “events” generated as described above; wi are the explicit 
weights (including the inverse probability of generating the unscaled point x0 , 
the Jacobians for mapping to the point x, and any model theoretical probability 
associated with the point x); (bi} are the set of parameters specifying the mapping, 
and a({&}) is an arbitrary normalized function. We want to choose u to optimize 
the estimate of (Q). 

In general the choice of u would depend on Q: we shall assume that we are 
interested in simulating an experiment, when the same set of events may have to 
be used to discuss many different averages. The best simulation (and in fact the 
best uniform procedure for estimating a general (Q)) will come when the relative 
weights w,u({&}) associated with different events are as close as possible, or in 
other words, we must choose u so as to minimize 

A2 = ((w”u2) - (wu)2)/(wu)2 (VIII-2) 

(In what follows we shall consider the case of a single b for simplicity: the argument 
goes through exactly when n b’s determine an event if u(b) is replaced by u({b,}) 
and db by ny db, .) 

The averages in (VIII-2) are taken over the joint probability distribution of 
the pairs of values (w, b) occurring in event sample 

(wu) = j”j” wu(b) p(w, b) dw db, 

(w2u2) = j-j- w2u2(b) p(w, b) dw db, 
(VIII-3) 

p(w, b) being the probability density. To solve for the function u we take the 
functional derivative of A2 with respect to u and equate it to zero: 

6A2[u] (~a)~ .2u(b) s w2p(w, b) dw - 2 (wu) s wp(w, b) dw (w2u2) -z 
6U (wu>4 

Hence 

zzz 0. (VIII-4) 

u(b) = (w(b)/p(b)) . <w202>/(wu), (VIII-4) 
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where E(b) = J wp(w, b) dw is the mean weight associated with a given b. The 
term involving the averages (w2u2) and (~0) is independent of b and can be 
ignored as an arbitrary normalization constant. (Although (VIII-4) is apparently 
an implicit equation for u, taking the functional derivative at a different point 
o(b’) and dividing will confirm that the normalizing term is irrelevant). Thus we 
obtain 

u(b) = W(b)/g(b) = W(b)/(62(b) + w(b)2), (VIII-5) 

where S2(b) is the variance in w associated with a fixed value b. Since the variance 
in wu(b) comes both from the variance of means G(b) and the mean of the 
variances a2b, this ensures that if either component dominates the variance of w, 
it is eliminated in the variance of wcr, as we intend. 

To evaluate (VIII-5) from observations on a finite sample of events we need to 
make some assumptions as to the form of p(w, b). We first assume that In w is 
normally distributed with mean p(b) and variance y(b): 

PUn w I b) = M2~y@W2) exp --(On w - d.W2/2y(b)), (VIII-6) 

leading to the result 

4) = ed-4-Q + M?M. (VIII-7) 

The assumption (VIII-6) is somewhat arbitrary; however it is plausible when we 
bear in mind that an important component of the weight w is the product of the 
3n independent probabilistic weights associated with the random number genera- 
tions. Reducing all of these ultimately to the generations of identically normally 
distributed random numbers, the central limit theorem suggests the assumption 
we have made. 

If we now choose the definition of our scale parameters b, **a b, so that they 
are also normally distributed, then the standard results for multivariate normal 
distributions can be applied [lo] and we can immediately assert that y(b) is 
independent of b, and that therefore the second term in the exponent in (VIII-7) 
can be dropped as contributing an overall constant. To evaluate the other term 
we define 

Pi = <bd, 
Ab, = b< - pi, 

P = (In w>, i 
A In w = In w - p, 

Uii = (Abi Abj), 
ad = (Ab, A In w), 

(VIII-8) 
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where the averages over the whole sample. Then 

p(b) = p + i 4(+)i5 a5 . 
i.j=l 

(VIII-9) 

So that, again omitting overall constant terms, we use 

a(b) = exp - i 
i 

beaj(c+)ij 
t 

. (VIII-lo) 
i.j=l 

For best results the distribution of bi should be checked to see whether some other 
function of bi has a distribution closer to normal. 

APPENDIX A 

In this appendix we discuss a more general scheme for eliminating the a-function 
constraints by using the mapping (IV-lo). The procedure discussed in Section IV 
is probably the simplest special case of this scheme; an alternative simple and 
useful case is given here. 

Consider the one dimensional integral 

I = j f(r) dr. (A-1) 
TEP 

Suppose we can find a transformation 

r = r(r’, b), r’ep’, bEj3, (A-2) 

which for fixed b maps p’ into p, and for fixed r’ maps /3 into p. (A scaling trans- 
formation over the range [0, co] satisfies this condition, for example.) Let 

Jg(r’, b) = ar/ar’; JB(r’, b) = &lab, (A-3) 

and let us introduce the notationf(r’, b) zf(r(r’, b)) for any function5 Then we 
can rewrite I in two different ways: 

I = I,, = 1 
CEO 

f”(r’, b) J,e(r’, b) dr’, 

I=&=1 f(r’,b)J,(r’,b)db, 
be9 

(A-4a) 

(A-4b) 
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and hence, if cr&‘), u&) are normalized functions over the ranges p’ and & 
respectively, we can write 

I = f Ip,(b) db = 1s J(r’, b) Jg(r’, b) u,(b) dr’ db (A-5a) 

or 

I = 1 Isa, dr’ = 1 / f(r’, b) J,(r’, b) a,t(r’) dr’ db. (A-5b) 

In this case r’, b enter in a completely symmetrical way. 
Now let us consider again the case of an I-dimensional integral, where now -x 

is the integration variable over some l-dimensional R and we use the mapping 
(Iv-lo) 

x = gk W (A-6) 

Suppose we now pick a new set of coordinates 

x = (r, w); y = (r’, w) 

r = r(r’, b) 
(A-7) 

where w is (I - 1) dimensional and is left invariant by the mapping (A-6). Then 
we have 

l=JRF(x)dix=j F(r, w) &(r, w) dr dz-k, (A-8) 

where 

or in other words 

I = j- I(w) dz-lw, 

(A-9) 
I&J) = I F(r, w) J+(r, w) dr, 

and I(w) is just a one-dimensional integral of the type considered above with w 
a parameter appearing at each stage of the integrand. 

We now consider the case when F(x) contains a a-function constraint 

f’h) =fW St&4 - 4. (A-10) 
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We carry out the substitutions leading to the equivalent of (A-5) and eliminate 
the 8 functions by integrating over b, as in Section IV. We obtain 

(A-l la) 

I= j-Ryf(gj~> b,N J&y, bo) ar(r;;) b, 1 ww, bo) 
b-b, ar’ I r,(y) O,@‘(Y), W(Y)) d’y. 

(A-llb) 

Equation (A-l la) is a slight generalization of (N-16) allowing the arbitrary 
function a, to depend on the value of the invariant w, and to be separately nor- 
malized for each w; (A-l lb) provides an alternative procedure. 

As a result, Eq. (A-lla) involves an arbitrary function of b and w evaluated 
at b = b, , while Eq. (A-llb) involves an arbitrary function of r’ and w, inde- 
pendent of the 6 function. Thus the choice between these two procedures would 
depend on whether it is more convenient to find a suitable function for a(b, w) 
or u(r’, w). In the latter case we would have to use a procedure analogous to that 
discussed in Section VIII to determine the optimal u(r’, w). 

Equation (A-lla) is more general than Eq. (IV-16) in the sense that Q can 
depend on the I - 1 invariants as well as b. However, we have to find a suitable 
set of invariants and a function u which is normalized for all values of P, while 
Eq. (IV-16) is much simpler and very often sufficient. Equation (A-l lb) has an 
apparent advantage over Eqs. (IV-16) and (A-l la) that the choice of CY directly 
depends on the distribution of y itself, which is chosen a priori, while for 
Eq. (A-lla), the choice for (T depends on the distribution of b, , which has to be 
determined from the distribution of y and the 6 function. However, in using 
Eq. (A-llb), we have to find a suitable set of variables r and r’, as well as the 
invariants. A special case of Eq. (A-lib) is that 6(r’, w) is independent of the 
invariants in analogy with Eq. (IV-16). For the simple additive, multiplicative, 
or exponential transformation mentioned in Section IV, it is simple enough to 
find these variables and Eq. (A-l 1 b) can be a very useful alternative. In particular 
for a multiplicative transformation the choice 

I 
( 1 

112 
r= Cx12 , 

1 

W5 = %+llxj 9 j=l -a* I- 1, 

is a suitable one, and is essentially that used by Kittel and Van Hove [2] in the 
procedure mentioned in the next appendix. 
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APPENDIX B: COMPARISON WITH ALTERNATIVE SCHEMES FOR 
MONTE CARLO PHASE SPACE INTEGRATION 

There exist many programs which generate events distributed in some manner 
within the Lorentz invariant n-particle phase space of 3n - 4 dimensions. We 
comment briefly here on the different approaches which have been used and the 
differences from the method advocated here. 

One major difference is that almost all rely on a set of random points generated 
uniformly inside a hypercube of 3n - 4 dimensions. Their problem is then to find 
a mapping which maps the phase space volume (or, more precisely, which maps 
that part of phase space which contributes appreciably to the calculated quantity 
in question) into a significant fraction of that hypercube. By the mapping procedure 
introduced here we guarantee that every point lies in the phase space volume and 
for sufficiently high multiplicity we can fairly easily concentrate the majority of 
points in any desired subregion. The price we pay is that since in general the points 
prior to mapping must be generated in an infinite volume, they must be generated 
nonuniformly and a poor choice can lead to bad fluctuations, though these can 
be compensated to a large extent by the procedures of Section VIII. 

The scheme described in this paper is not a specific event generator but a proce- 
dure for constructing a large class of such programs. It is therefore not possible 
to give any very specific results about time or efficiency since these will depend 
so much on the particular problem. One example, however, can be mentioned, 
as indicated in Section V this scheme can reproduce the same results as that of 
Kittel et al. [2] but with much less computation, the differential becoming more 
important with increasing multiplicity. Event generation rates of 1 msec/particle/ 
event on a CDC 6600, have been attained using a multiregge matrix element, and 
obtaining events with small fluctuations of weights. 

The most important advantage, however, is that the arbitrariness of the total 
four-momentum allowed by the scheme makes it possible to generate events 
which all satisfy some particular trigger (such as large transverse momentum), 
without having to project from a distribution over the entire phase space region. 
Most of the schemes discussed below cannot be used in this manner. 

The other schemes fall principally into two classes. The first is especially appro- 
priate at low energies when the relevant phase space volume is more or less 
isotropic (a good discussion is given in [I]). The variables used are obtained by 
representing the process as a sequence of two-body “decays.” As the number n, 
of particles increases so does the number of alternative decay schemes, each of 
which can be represented by a tree graph. Two different schemes for the case n = 5 
are illustrated in Fig. 3, and illustrate the fact that (n - 1) vertices are needed. 
A two-body “decay” is characterized by the energy and angle associated with the 
“decay” products in the rest frame of the “decaying” system, usually expressed 
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as (pi, Bi , yi) where pi is the invariant mass of the decaying system, Bi is the 
polar angle and vi the azimuth of one of the decay products relative to some fixed 
direction or, equivalently, (pi , ti , & where ti is the invariant four-momentum 
transfer of that decay product from one of the initial particles, whose direction 
serves as the axis about which & is measured. The (3n - 4) variables consist 
of the variables describing each of the (n - 1) vertices, except the invariant mass 
pL1 of the first vertex which is fixed by specifying the energy of the collision. 

FIG. 5. Two alternative trees for N =: 5. 

FIG. 6. Multiperipheral tree structure. 

Since in principle an arbitrary distribution could be given to each of these 
variables and any choice of “tree” graph is allowed, the system allows great 
flexibility. However, since the range of values of pi depends on various tag (j < i), 
the process of obtaining a desired distribution is rather complex unless the tree 
structure corresponds closely to the physical model of the reaction. Furthermore, 
it is not very easy to simulate the behavior of high energy, multiparticle collisions, 
where transverse momenta are always small. To some extent this can be achieved 
(Friedman, Risk and Zang [l]; Byckling and Kajantie [3]) using the particular 
tree structure shown in Fig. 4 and using the four-momentum transfer variables ti . 
By generating masses pFli concentrated at the bottom of their allowed range, and 
damping the distribution in t, an efficient system is obtained for the multiperipheral 
model, but it is quite complex and not easily extendable to other models. 
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Kittel, Wojcik and Van Hove [2] have developed a scheme which is much more 
in the spirit of the one proposed here. They work with a phase space defined in 
terms of the 3n center of mass three-momenta (pL , p) separated into longitudinal 
and transverse components. In order to satisfy momentum conservation only, 
(n - 1) vectors are chosen independently, their components being Gaussianly 
distributed. Then these (n - 1) vectors together with the null vector are 
orthogonally transformed into IZ vectors whose sum is constrained to vanish and 
which are otherwise uncorrelated. This leaves only one constraint and setting 

which does not affect the vanishing of the sum C pL , the momenta are transformed 
on to the appropriate energy-momentum surface. The present paper is essentially 
a generalization and extension of this scheme in two respects. First, the restriction 
to the particular variables in question has been removed so calculations can be 
carried out just as easily in rapidity or other variables and directly in any frame of 
reference desired. Second, the restriction to Gaussian distributions is removed 
for the transverse momenta since the cumbersome orthogonal transformation 
connecting independent and dependent variables is eliminated and the results of 
Section V used directly. 

We finally mention the scheme developed by Pene and Kryzwicki [4]. To 
generate the transverse momenta they proceed in a way similar to Van Hove; 
then the longitudinal components are obtained from a multiperipheral type tree 
decomposition. 

All of these schemes involve a lower dimension integration but more steps of 
computation and are less flexible than our simple, general scheme. On the other 
hand they may be more convenient in some special cases. 
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